skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hirsch, Sven"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We prove uniqueness of tangent cones for forced mean curvature flow, at both closed self-shrinkers and round cylindrical self-shrinkers, in any codimension. The corresponding results for mean curvature flow in Euclidean space were proven by Schulze and Colding–Minicozzi, respectively. We adapt their methods to handle the presence of the forcing term, which vanishes in the blow-up limit but complicates the analysis along the rescaled flow. Our results naturally include the case of mean curvature flows in Riemannian manifolds. 
    more » « less
    Free, publicly-accessible full text available February 13, 2026
  2. Free, publicly-accessible full text available February 1, 2026
  3. Abstract The Theorem of Bonnet–Myers implies that manifolds with topology do not admit a metric of positive Ricci curvature, while the resolution of Geroch's conjecture implies that the torus does not admit a metric of positive scalar curvature. In this work we introduce a new notion of curvature interpolating between Ricci and scalar curvature (so‐calledm‐intermediate curvature), and use stable weighted slicings to show that for and the manifolds do not admit a metric of positivem‐intermediate curvature. 
    more » « less
  4. Abstract Generalized torical band inequalities give precise upper bounds for the width of compact manifolds with boundary in terms of positive pointwise lower bounds for scalar curvature, assuming certain topological conditions. We extend several incarnations of these results in which pointwise scalar curvature bounds are replaced with spectral scalar curvature bounds. More precisely, we prove upper bounds for the width in terms of the principal eigenvalue of the operator $$-\Delta +cR$$, where $$R$$ denotes scalar curvature and $c>0$ is a constant. Three separate strategies are employed to obtain distinct results holding in different dimensions and under varying hypotheses, namely we utilize spacetime harmonic functions, $$\mu $$-bubbles, and spinorial Callias operators. In dimension 3, where the strongest result is produced, we are also able to treat open and incomplete manifolds, and establish the appropriate rigidity statements. Additionally, a version of such spectral torus band inequalities is given where tori are replaced with cubes. Finally, as a corollary, we generalize the classical work of Schoen and Yau, on the existence of black holes due to concentration of matter, to higher dimensions and with alternate measurements of size. 
    more » « less